A cascaded Kalman filter-based GPS/MEMS-IMU integration for sports applications

نویسندگان

  • Shaghayegh Zihajehzadeh
  • Darrell Loh
  • Tien Jung Lee
  • Reynald Hoskinson
  • Edward J. Park
چکیده

Nonlinear Kalman filtering methods are the most popular algorithms for integration of a MEMS-based inertial measurement unit (MEMS-IMU) with a global positioning system (GPS). Despite their accuracy, these nonlinear algorithms present a challenge in terms of the computational efficiency for portable wearable devices. We introduce a cascaded Kalman filter for GPS/MEMS-IMU integration for the purpose of trajectory determination in sports applications. The proposed algorithm uses a novel orientation filter, cascaded with a position/velocity filter. By using cascaded linear Kalman filtering, this method avoids the need to propagate additional states, resulting in the covariance propagation to become more computationally efficient for ambulatory human motion tracking. Additionally, the use of this separate orientation filter helps to retain the orientation accuracy during GPS outage. Results of the field experiments reveal that the proposed algorithm is computationally much faster compared to the available non-linear approaches and demonstrates improved trajectory tracking during GPS outages. 2015 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GPS/INS Integration for Vehicle Navigation based on INS Error Analysis in Kalman Filtering

The Global Positioning System (GPS) and an Inertial Navigation System (INS) are two basic navigation systems. Due to their complementary characters in many aspects, a GPS/INS integrated navigation system has been a hot research topic in the recent decade. The Micro Electrical Mechanical Sensors (MEMS) successfully solved the problems of price, size and weight with the traditional INS. Therefore...

متن کامل

UNIVERSITY OF CALGARY Accuracy Enhancement of Integrated MEMS-IMU/GPS Systems for Land Vehicular Navigation Applications

This research aims at enhancing the accuracy of land vehicular navigation systems by integrating GPS and Micro-Electro-Mechanical-System (MEMS) based inertial measurement units (IMU). This comprises improving the MEMS-based inertial output signals as well as investigating the limitations of a conventional Kalman Filtering (KF) solution for MEMS-IMU/GPS integration. These limitations are due to ...

متن کامل

Test Results of a Gps/inertial Navigation System Using a Low Cost Mems Imu

This paper describes the design, operation, and test results of a miniature, low cost integrated GPS/inertial navigation system that uses commercial off-the-shelf Micro-Electro-Mechanical System (MEMS) accelerometers and gyroscopes. The MEMS inertial measurement unit (IMU) is packaged in a small size and provides the raw IMU data through a serial interface to a processor board where the inertia...

متن کامل

Particle Filter Data Fusion Enhancements for MEMS-IMU/GPS

This research aims at enhancing the accuracy of navigation systems by integrating GPS and Micro-ElectroMechanical-System (MEMS) based inertial measurement units (IMU). Because of the conditions required by the large number of restrictions on empirical data, a conventional Extended Kalman Filtering (EKF) is limited to apply in navigation systems by integrating MEMS-IMU/GPS. In response to non-li...

متن کامل

Performance Test Results of an Integrated GPS/MEMS Inertial Navigation Package

This paper describes the design, operation and performance test results of a miniature, low cost integrated GPS/inertial navigation system (INS) designed for use in UAV or UGV guidance systems. The system integrates a miniaturized commercial GPS with a low grade Micro-Electro-Mechanical (MEMS) inertial measurement unit (IMU). The MEMS IMU is a small self-contained package (< 1 cu inch) and incl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016